

CRAG Symposium:

UNCERTAINTY: An Introduction

M. Granger Morgan
Chair, Scientific and Technical Council
of the International Risk Governance Council
Head, Department of Engineering
and Public Policy, Carnegie Mellon University,
Pittsburgh, PA 15213
1+412-268-2672
granger.morgan@andrew.cmu.edu

QUESTION: Why has the center for risk analysis and governance...

...chosen to focus this meeting on uncertainty?

ANSWER: Because risk is the exposure to *a chance* of injury or loss.

When an injury or loss is a sure thing we do not use the word risk.

And, of course, the word *chance* implies uncertainty.

Before I turn to uncertainty...

...I should note that the simple assumption often made by many technical people, that risk is the expected value of some loss

 $E[p^*L]$

is *not* consistent with the way in which we all think about risk in our daily lives.

There is...

...a large literature in behavioral social science that finds that people view risk as a multi-attribute concept.

FACTS AND FEARS: UNDERSTANDING PERCEIVED RISK

Paul Slovic, Baruch Fischhoff and Sarah Lichtenstein

Decision Research, A Branch of Perceptronics Eugene, Oregon

ABSTRACT

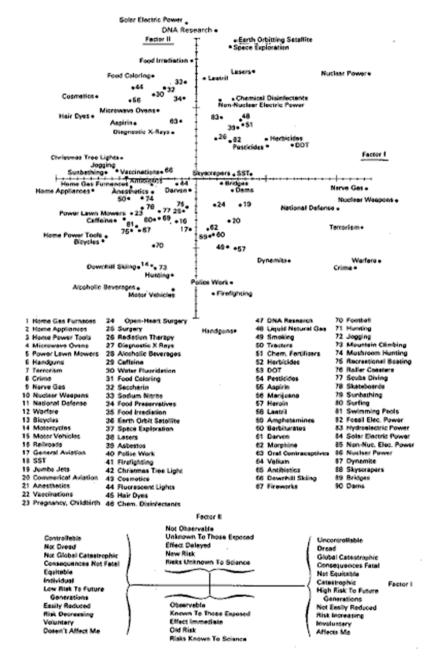
Subjective judgments, whether by experts or lay pecple, are a major component in any risk assessment. If such judgments are faulty, efforts at public and environmental protection are likely to be misdirected. The present paper begins with an analysis of biases exhibited by lay people and experts when they make judgments about risk. Next, the similarities and differences between lay and expert evaluations are examined in the context of a specific set of activities and technologies. Finally, some special issues are discussed, including the difficulty of reconciling divergent opinions about risk, the possible irrelevance of voluntariness as a determinant of acceptable risk, the importance of causatrophic potential in determing perceptions and triggering social conflict, and the need to facilitate public participation in the management of hazards.

INTRODUCTION

People respond to the hazards they perceive. If their perceptions are faulty, efforts at public and environmental protection are likely to be misdirected. For some hazards, extensive statistical data are readily available; for example, the frequency and severity of motor vehicle accidents are well documented. The hazardous effects of other familiar activities, such as the consumption of alcohol and tobacco, are less readily discernible; their assessment requires complex epidemiological and experimental studies. However, even when statistical data are plentiful, the "hard" facts can only go so far towards developing policy. At some point human judgment is needed to interpret the findings and determine their relevance.

Still other hazards, such as those associated with recombinant DNA research or nuclear power, are so new that risk assessment must be based on complex theoreti-

References pp. 212-214.



FOR DETAILS SEE: Sarah Lichtenstein, Paul Slovic, Baruch Fischhoff, Mark Layman and Barbara Combs, "Judged frequency of lethal events," *Journal of Experimental Psychology, Human learning and memory*, 4, pp. 551-578, 1978 Nov. AND Paul Slovic, Baruch Fischhoff and Sarah Lichtenstein, "Facts and Fears: Understanding perceived risk," pp. 181-216, in *Societal Risk Assessment*, Schwing and Albers (eds.), Plenum, 1980.

When does uncertainty matter in risk and policy analysis?

Decision analysis says it should matter when:

- decision makers' attitudes toward risk are important (e.g., risk aversion);
- uncertain information from different sources must be combined;
- when decisions must be made about acquiring additional information; and
- when the loss function has a significant third order dependency on the uncertain quantity (i.e., is highly asymmetric).

Beyond these formal reasons...

...dealing explicitly with uncertainty:

- helps identify and overcome biases from cognitive heuristics;
- helps in defining and revising models;
- helps decision makers better evaluate the advice they are receiving (e.g., can help them understand the extent to which different experts agree or disagree);
- helps in explicitly separating issues of value from issues of fact; and
- helps analysts more clearly state the implications and limitations of their work.

This afternoon I will talk about:

- Sources of uncertainty and the characterization of uncertainty.
- Uncertainty versus variability.
- Two basic types of uncertainty.
 - Uncertainty about coefficient values.
 - Uncertainty about model functional form.
- Analyzing uncertainty.
- The use and abuse of "expert elicitation."
- Some summary guidance on reporting, characterizing and analyzing uncertainty.

Probability

Probability is the basic language of uncertainty.

Risk analysis typically adopts a personalistic view of probability (sometimes also called a subjectivist or Bayesian view).

In this view, probability is a statement about the degree of belief that a person has that a specified event will occur *given* all the relevant information currently known by that person. That is:

p(X|i) where:

X is the uncertain event i is the person's state of information.

The clairvoyant test

Even if we take a personalist view of probability, the event or quantity of interest must be well specified for a probability, or a probability distribution, to be meaningful.

"The retail price of gasoline in 2015" does not pass this test. In order to give a precise answer, a clairvoyant would need to know things such as:

- Where will the gasoline be purchased?
- At what time of year?
- What octane?

Does a subjectivist view mean your probability can be arbitrary?

NO, because if they are legitimate probabilities, they must:

- conform with the axioms of probability; and
- be consistent with available empirical data.

Many people ask, why deal with formal probability? Why not just use subjective words such as "likely" and "unlikely" to describe uncertainties?

There are very good reasons *not* to do this.

The risks of using qualitative uncertainty language

Qualitative uncertainty language is inadequate because:

- the same words can mean very different things to different people;
- the same words can mean very different things to the same person in different contexts; and
- important differences in experts' judgments about mechanisms (functional relationships), and about how well key coefficients are known, can be easily masked in qualitative discussions.

Mapping words to probabilities

This figure shows the range of probabilities that people are asked to assign probabilities to words, absent any specific context.

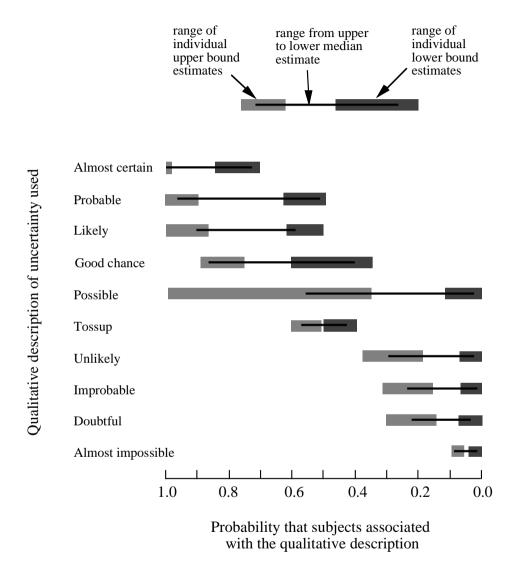


Figure adapted from Wallsten et al., 1986.

Ex Com of EPA SAB

The minimum probability associated with the word "likely" spanned four orders of magnitude.

The maximum probability associated with the word "not likely" spanned more than five orders of magnitude.

There was an overlap of the probability associated with the word "likely" and that associated with the word "unlikely"!

Key: SAB members: Other meeting participants: 0.000001Probability that the material

is a human carcinogen

Figure from Morgan, HERA, 1998.

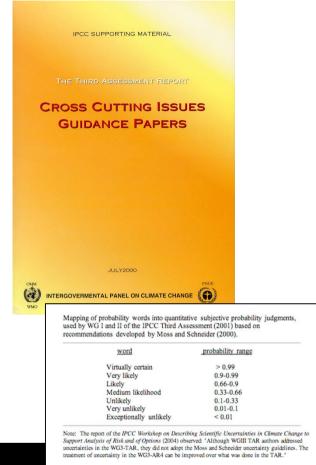
The bottom line:

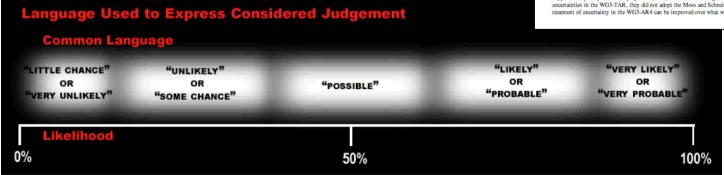
Without at least some quantification, qualitative descriptions of uncertainty convey little, if any, useful information.

The climate assessment community is gradually learning this lesson.

Steve Schneider and Richard Moss worked hard to promote a better treatment of uncertainty in the work of the IPCC.

At my insistence, the U.S. national assessment synthesis team gave quantitative definitions to five probability words:





BUT, in other fields...

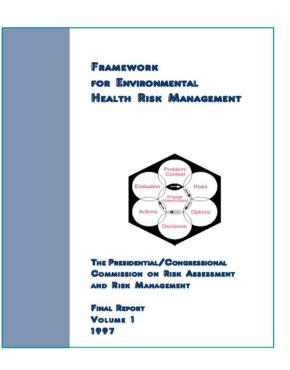
...such as biomedical and health effects, progress has been *much* slower.

A concrete example of this is provided by the recommendations of the U.S. Presidential/ Congressional Commission on Risk Assessment and Risk Management (1997)

which recommended..."against routine use of formal quantitative analysis of uncertainty in risk estimation, particularly that related to evaluating toxicology."

While analysts were encouraged to provide "qualitative descriptions of risk-related uncertainty," the Commission concluded that "quantitative uncertainty analyses of risk estimates are seldom necessary and are not useful on a routine basis to support decision-making."

Such views are changing, but progress continues to be slow.



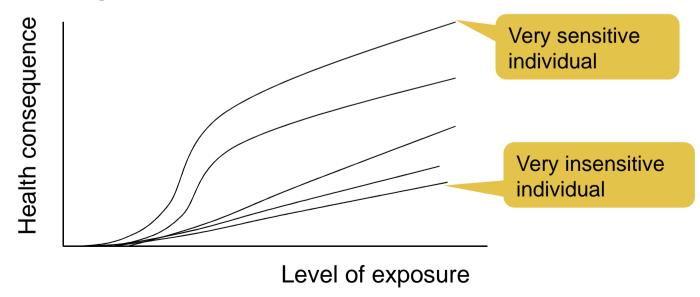
This afternoon I will talk about:

- Sources of uncertainty and the characterization of uncertainty.
- Uncertainty versus variability.
- Two basic types of uncertainty.
 - Uncertainty about coefficient values.
 - Uncertainty about model functional form.
- Analyzing uncertainty.
- The use and abuse of "expert elicitation."
- Some summary guidance on reporting, characterizing and analyzing uncertainty.

Uncertainty versus variability

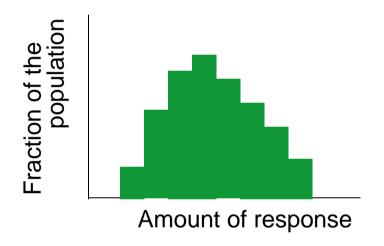
Many processes, such as the rate of flow in a river, or the sensitivity of individuals to a pollutant, show variability over time or across individuals.

For example, consider the case of how different individuals might respond to a pollutant:



Variability can be represented...

...by a histogram, which is a non-subjective statement about a set of data. For example:

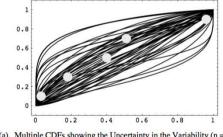


Because histograms showing variability are based on observed data and are not subjective, some who are uncomfortable about using a Bayesian perspective have drawn an overly sharp distinction between variability and uncertainty.

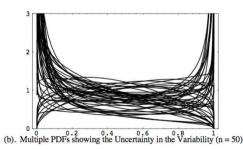
Sometimes it is important...

...to make a distinction between variability and uncertainty, but more typically in risk and policy analysis, variability is just another contributor to the uncertainty that must be characterized and addressed.

Treating the two separately can result in intellectually interesting, complex displays. However, in my view these are rarely helpful in practical risk analysis and risk decision making.



(a). Multiple CDFs showing the Uncertainty in the Variability (n = 50)



Source: Frey and Burmaster, Risk Analysis, 1997

This afternoon I will talk about:

- Sources of uncertainty and the characterization of uncertainty.
- Uncertainty versus variability.
- - Two basic types of uncertainty.
 - Uncertainty about coefficient values.
 - Uncertainty about model functional form.
 - Analyzing uncertainty.
 - The use and abuse of "expert elicitation."
 - Some summary guidance on reporting, characterizing and analyzing uncertainty.

We must consider two quite different kinds of uncertainty

- 1. Situations in which we know the relevant variables and the functional relationships among them, but we do not know the values of key coefficients (e.g., an oxidation rate, the slope of a damage function, or the "climate sensitivity").
- 2. Situations in which we are not sure what all the relevant variables are, or the functional relationships among them (e.g., will rising energy prices induce more technical innovation?).

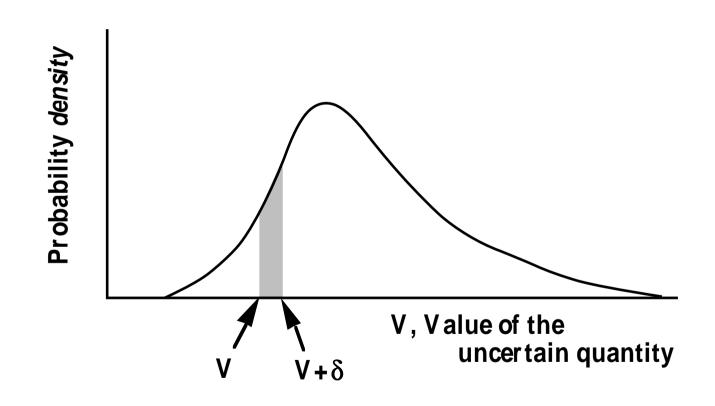
Both are challenging, but the first is much more easily addressed than the second.

PDFs and CDFs

A number of examples I am about to show are in the form of probability density functions (PDFs) or cumulative distribution functions (CDFs).

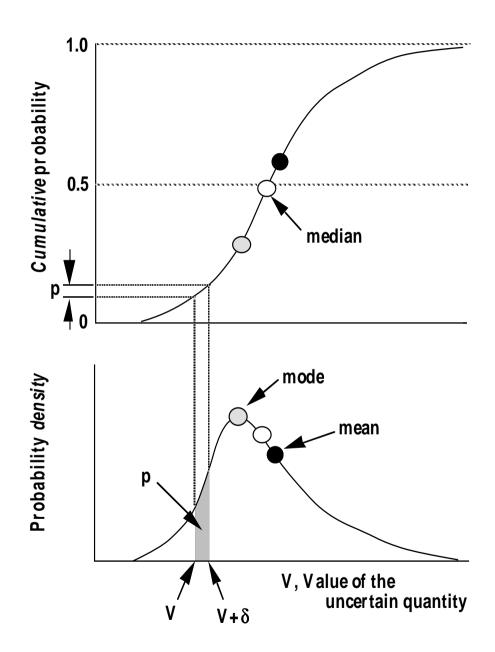
Since some of you may not make regular use of PDF's and CDF's, let me take just a moment to remind you...

Probability density function or PDF



Cumulative distribution function or CDF

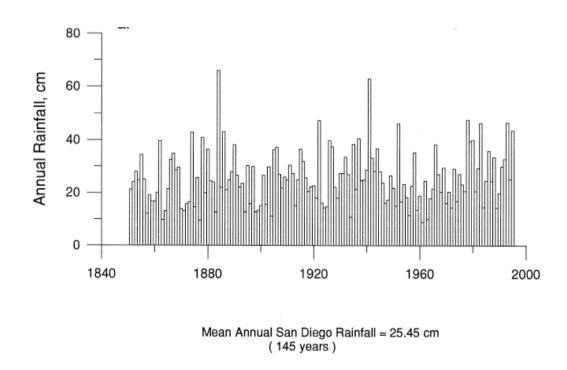
NOTE: In asymmetric distributions with long high tails, the mean may be much much larger than the median.



If I have good data...

...in the form of many observations of a random process, then I can construct a probability distribution that describes that process. For example, suppose I have the 145 years of rainfall

data for San Diego,
California, and I am
prepared to assume
that over that period
San Diego's climate
has been "stationary"
(that is the basic
underlying processes
that create the yearto-year variability
have not changed)...

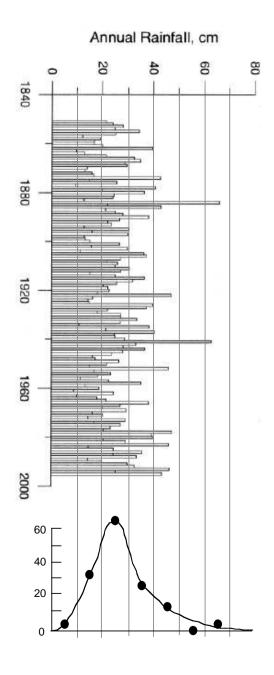


Source: Inman et al., Scripps, 1998.

Then if I want...

...a PDF for future San Diego annual rainfall, the simplest approach would be to construct a histogram from the data, as illustrated to the right.

If I want to make a prediction for some *specific* future year, I might go on to look for time patterns in the data. Even better, I might try to relate those time patterns to known slow patterns of variation in the regional climate, and modify my PDF accordingly.

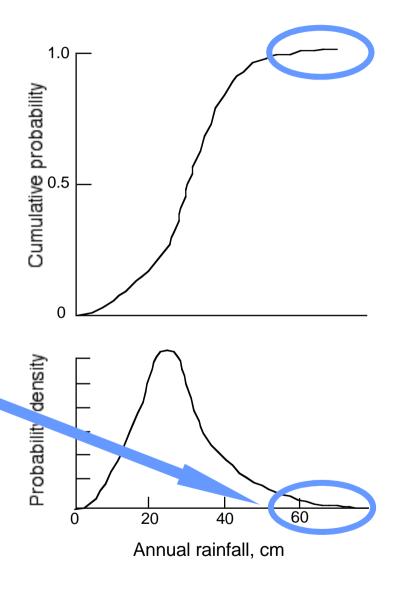


In that way...

...I could construct a PDF and CDF for future San Diego rainfall that would look roughly like this.

However, suppose that what I really care about is the probability that very large rainfall events will occur.

Since there have only been two years in the past 145 years when rainfall has been above 60 cm/yr over, I'll need to augment my data with some model or physical theory, and perhaps make use of expert judgment.



In summary...

...one should use available data, and well-established physical and statistical theory, to describe uncertainty about the value of key coefficients whenever either or both are available.

However, often the available data and theory are not exactly relevant to the problem at hand, or they are not sufficiently complete to support the full objective construction of a probability distribution.

In such cases, one may have to rely on expert judgment.

I'll say a few more words about that in a moment.

This afternoon I will talk about:

- Sources of uncertainty and the characterization of uncertainty.
- Uncertainty versus variability.
- Two basic types of uncertainty.
 - Uncertainty about coefficient values.
 - Uncertainty about model functional form.
- Analyzing uncertainty.
- The use and abuse of "expert elicitation."
- Some summary guidance on reporting, characterizing and analyzing uncertainty.

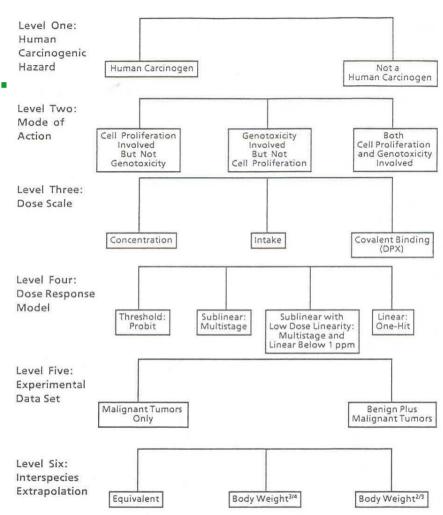
Uncertainty about model form

Often uncertainty about model form is as or more important than uncertainty about values of coefficients. Until recently there had been little practical progress in dealing with such uncertainty, but now there are several good examples:

- John Evans and his colleagues at the Harvard School of Public Health (e.g., Evans et al., 1994).
- Alan Cornell and others in the seismic risk (e.g., Budnitz et al., 1995).
- Hadi Dowlatabadi and colleagues at Carnegie Mellon in Integrated Assessment of Climate Change
 ICAM (e.g., Morgan and Dowlatabadi, 1996).
- Also on climate, Lempert and colleagues at RAND (e.g., Lempert, Popper, Bankes, 2003).

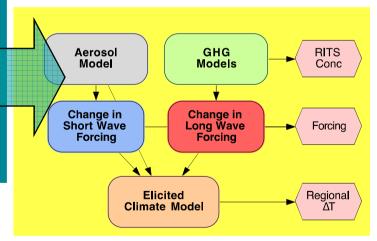
John Evans and colleagues...

method which lays out a "probability tree" to describe all the plausible ways in which a chemical agent might cause harm. Then experts are asked to assess probabilities on each branch.



For details see: John S. Evans et al., "A distributional approach to characterizing low-dose cancer risk," *Risk Analysis, 14*, 25-34, 1994; and John S. Evans et al., "Use of probabilistic expert judgment in uncertainty analysis of carcinogenic potency," *Regulatory Toxicology and Pharmacology, 20,* 15-36, 1994.

A very large hierarchically organized stochastic simulation model built in Analytica[®].



Impacts of Climate Change Energy & Emissions Atmospheric Composition & Climate Inputs Structure Outputs

For details see:

Hadi Dowlatabadi and M. Granger Morgan, "A Model Framework for Integrated Studies of the Climate Problem," *Energy Policy*, 21(3), 209-221, March 1993.

M. Granger Morgan and Hadi Dowlatabadi, "Learning from Integrated Assessment of Climate Change," *Climatic Change*, 34, 337-368, 1996.

ICAM dealt with...

- ...both of the types of uncertainty I've talked about:
 - 1. It dealt with uncertain coefficients by assigning PDFs to them and then performing stochastic simulation to propagate the uncertainty through the model.
 - 2. It dealt with uncertainty about model functional form (e.g., will rising energy prices induce more technical innovation?) by introducing multiple alternative models which can be chosen by throwing "switches."

ICAM

I won't take the time to present details from our work with the ICAM integrated assessment model. Here are just four conclusions:

- 1. Different sets of plausible model assumptions give *dramatically* different results.
- 2. No policy we looked at is dominant over the wide range of plausible futures we examined.
- 3. The regional differences in outcomes are so vast that few, if any, policies pass muster globally for similar decision rules.
- 4. Different metrics of aggregate outcomes (e.g., \$s versus hours of labor) skew the results to reflect the OECD or developing regional issues respectively.

More generally we...

...concluded, that prediction and policy optimization are pretty silly analytical objectives for much assessment and analysis related to the climate problem.

It makes much more sense to:

- Acknowledge that describing and bounding a range of futures may often be the best we can do.
- Recognize that climate is not the only thing that is changing, and address the problem in that context.
- Focus on developing adaptive strategies and evaluating their likely robustness in the face of a range of possible climate, social, economic and ecological futures.

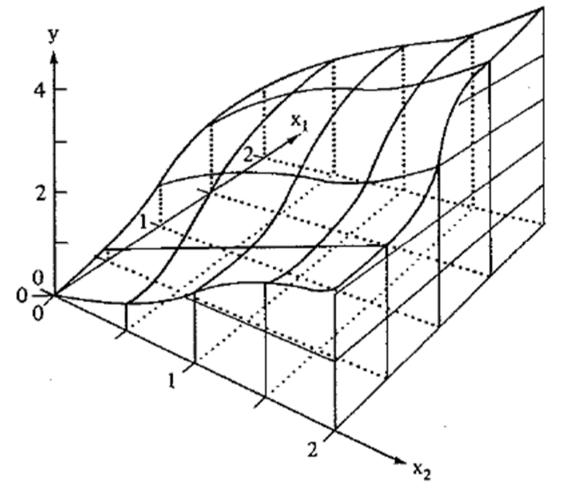
Work by Robert Lempert and colleagues takes a very similar approach (e.g., Lempert, Popper, Bankes, 2003).

This afternoon I will talk about:

- Sources of uncertainty and the characterization of uncertainty.
- Uncertainty versus variability.
- Two basic types of uncertainty.
 - Uncertainty about coefficient values.
 - Uncertainty about model functional form.
- Analyzing uncertainty.
- The use and abuse of "expert elicitation."
- Some summary guidance on reporting, characterizing and analyzing uncertainty.

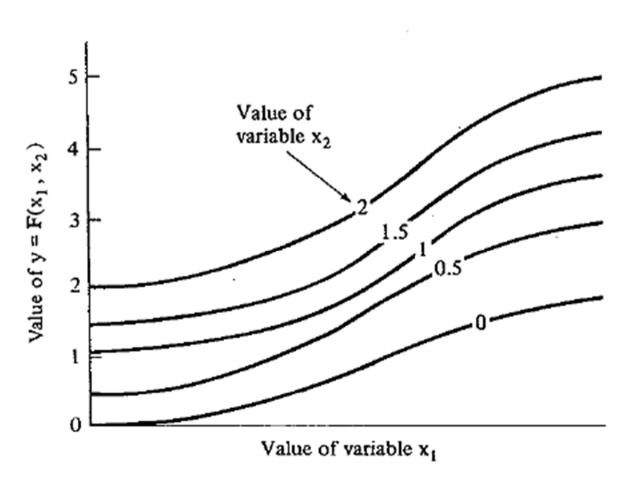
Consider a simple model...

... $y=f(x_1,x_2)$ where the values of both x_1 and x_2 may be uncertain.

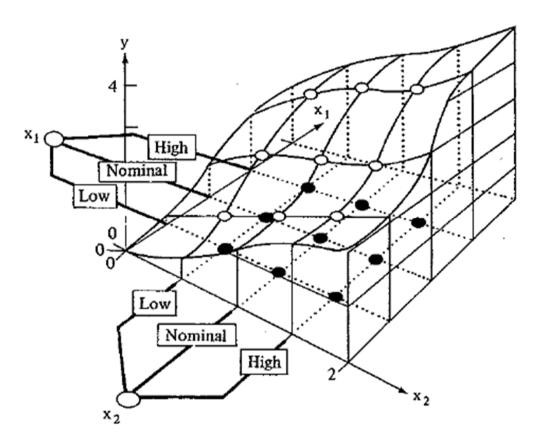


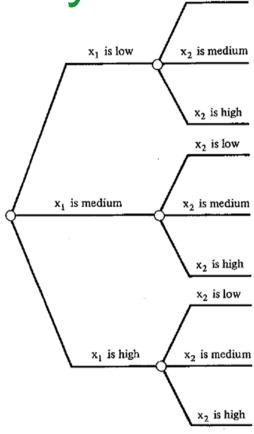
37

Parametric analysis



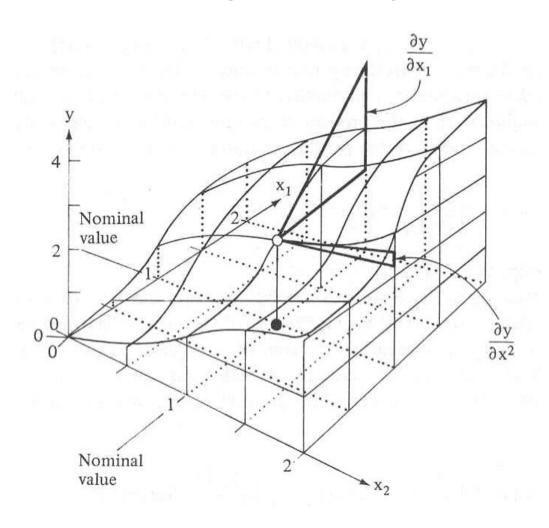
Combinatorial analysis





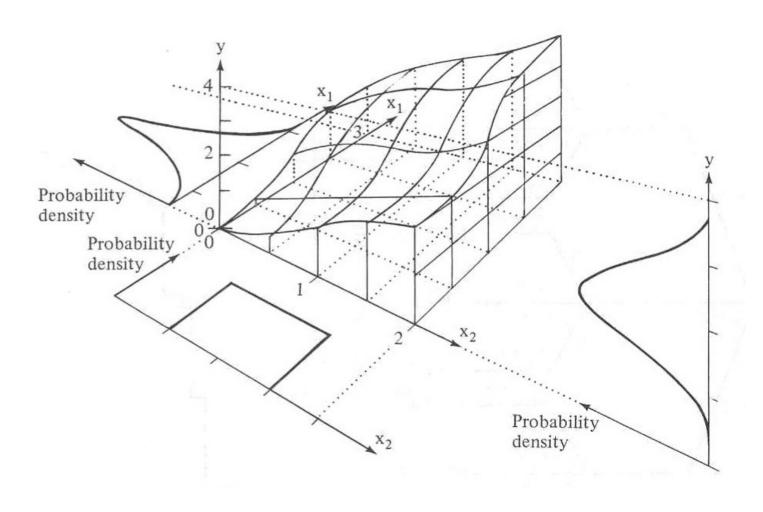
Source: Morgan and Henrion, 1990

Sensitivity Analysis



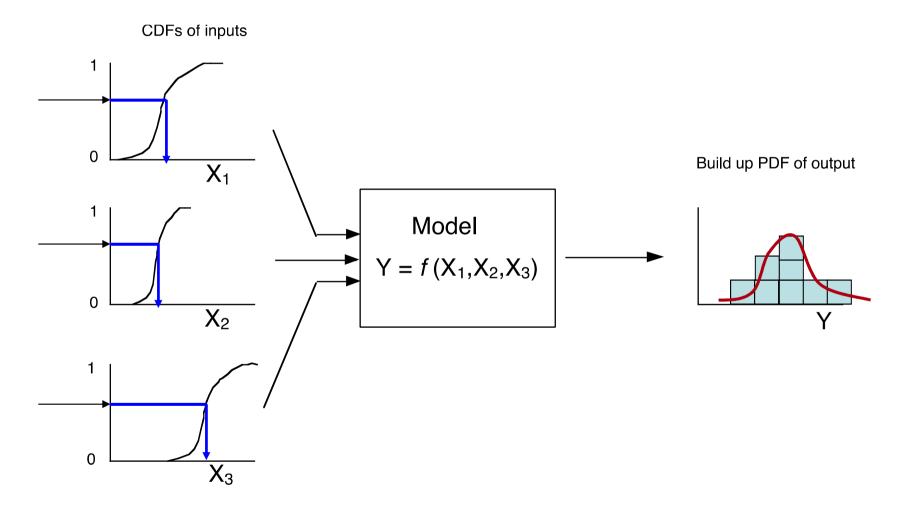
40

Propagation of continuous distributions



41

Monte Carlo Simulation



Tools for analysis

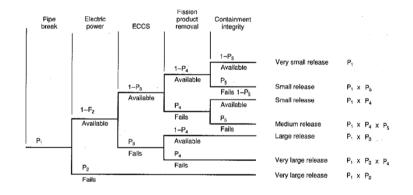
Tools for continuous processes:

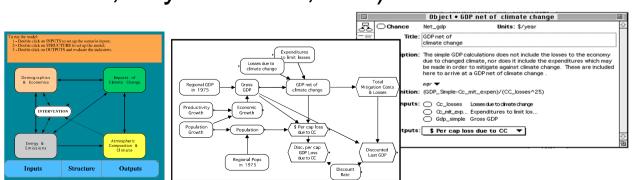
- Exposure models
- Dose response functions
- etc.

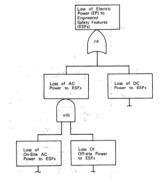
In the past, using some of these tools was very challenging and time consuming. Today, such analysis is facilitated by many software tools (e.g., Analytica®, @risk®, Crystal Ball®, etc.).

Tools for discrete events:

- Failure modes and effects analysis
- Fault tree models
- etc.







Why Analytica

Case Studies

Technology

Products

Support

Services

Company

"Everything that's wrong with the common spreadsheet is fixed in Analytica" - PC Week

Learn About Analytica

- » What is Analytica?
- » Features
- » Sales & Support
- » Analytica Wiki
- » Decision Analytics Blog

What Users Say

- "Analytica is very easy to learn. ... Once learned, it is delightful to use.."
- Anthony Cox & Associates
- » More

What Reviewers Say

- "Executives who are hesitant about using decision support systems should consider Analytica."
- Decision Strategies, Inc.

More

Purchase or Upgrade

Analytica 4.4 release:

What's New Buy Analytica

Upgrade

Renew Support

News & Events

- · Max Henrion Speaks at the World Bank
- Analytica 4.5 beta testing » more
- Lumina at INFORMS Analytics 2013 » more
- · Analytica 4.4.4 now available » more
- Lumina at INFORMS Annual 2012

» more

Green Analytics

Paper or plastic? CFLs or LEDs? It's often hard to figure out just what technologies and policies are sustainable. We specialize in creating analytic tools that are both comprehensive and comprehensible - to help evaluate technologies, policies, and entire organizations in terms of energy use, » more environmental footprint, and economic costs. » more

Lumina & Education

Lumina cares about improving numeracy in this complicated world. We support professors who aim to teach their students how to build effective quantitative models and use them critically. We make Analytica available free for use in the classroom.

Are you a supermodeler?

Supermodels get more attention. But, supermodelers have more influence on our complicated World. By supermodelers we mean those experts who really know how to create quantitative models that truly help us understand and navigate complex situations. We designed Analytica for those who are or want to become supermodelers.

Case Studies

Risk and Uncertainty Analysis

Consulting Firms and Analysts

Energy and Power

Open-Source Decision Models

Green Analytics

Defense, Aerospace and Security

Environmental modeling and analysis

Food and Agriculture

Savings from shifting electricity load to off-

Electrical Energy Storage Valuation Tool

Lumina assisted E3 Consulting to build a tool

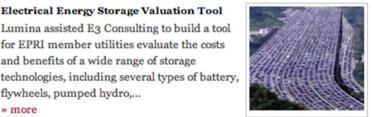
for EPRI member utilities evaluate the costs

and benefits of a wide range of storage

flywheels, pumped hydro,...

» more

Energy storage technologies, including batteries and thermal cooling, shift electrical



The Future of the Automobile

Will biofuels, electric vehicles, hydrogen vehicles or something else transform the US vehicle fleet? How will this affect costs, emissions, and energy imports? Find out with Lumina's ATEAM model.

» more

Helping Tucson Electric Power meet Renewable Portfolio Standards

Navigant Consulting created RE-Sim™ to help Tucson Electric Power develop plams to meet 11 0 16 1 01 1 1

This afternoon I will talk about:

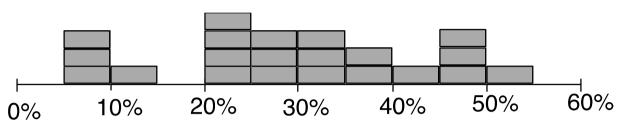
- Sources of uncertainty and the characterization of uncertainty.
- Uncertainty versus variability.
- Two basic types of uncertainty.
 - Uncertainty about coefficient values.
 - Uncertainty about model functional form.
- Analyzing uncertainty.
- The use and abuse of "expert elicitation."
- Some summary guidance on reporting, characterizing and analyzing uncertainty.

Expert elicitation

The elicitation of expert judgment, often in the form of subjective probability distributions, can be a useful way to combine the formal knowledge in a field, as reflected in the literature, with the informal knowledge and the intuition of experts. Elicitation can be a useful tool in support of research planning, private decision making, and the formulation of public policy.

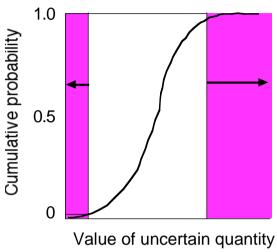
HOWEVER the design and execution of a good expert elicitation takes time and requires a careful integration of knowledge of the relevant substantive domain with knowledge of behavioral decision science.

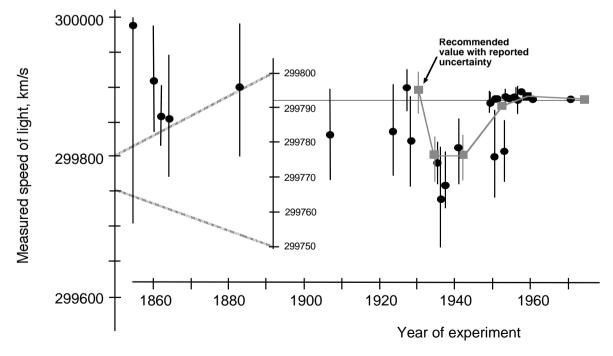
Over Confidence



Percentage of estimates in which the true value lay outside of the respondent's assessed 98% confidence interval.

2% probability that true value lies below the 1% lower bound or above the 99% upper bound.





Cognitive heuristics

When ordinary people or experts make judgments about uncertain events, such as numbers of deaths from chance events, they use simple mental rules of thumb called "cognitive heuristics."

In many day-to-day circumstances, these serve us very well, but in some instances they can lead to bias - such as over confidence - in the judgments we make.

Elicitation protocols should be designed to minimize the impact of three key heuristics: "availability," "anchoring and adjustment," and "representativeness."

However, rather than spend more time talking about "how to" details, I'll show three examples

Example 1:

Expert assessments of the cost of light water small modular reactors

Ahmed Abdulla¹, Inês Lima Azevedo, and M. Granger Morgan

Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA 15213

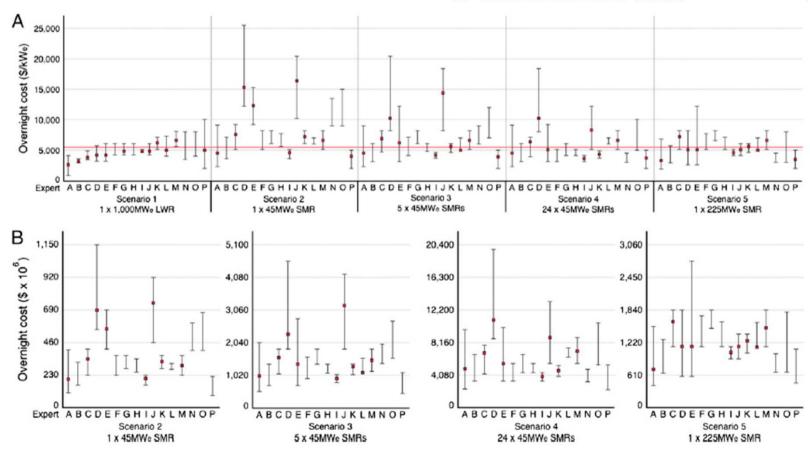
Edited by William C. Clark, Harvard University, Cambridge, MA, and approved April 26, 2013 (received for review January 9, 2013)

Analysts and decision makers frequently want estimates of the Analysts and decision maken frequently want estimates of the cost of technologies that have yet to be developed or deployed. Small modular reactors (SMMS), which could become part of a portfolio of arothor-free energy sources, are one such technology. Existing estimates of likely SMM costs rely on problematic technology. Existing estimates of likely SMM costs rely on problematic technology. When done properly, sopput elicitations can complement these approaches. We developed detailed etchnical description of two populars of the second property of the property o SMR designs and then conduced elicitation interviews in which we SMM designs and then conduced elicitation interviews in which we obtained probabilistic judgments from 16 experts who are in-volved in, or have access to, engineering-economic assessments of SMM projects. Here, we report estimates of the overnight cost and construction duration for five reactor-deployment scenarios that involve a large reactor and two light water SMMs. Consistent with the uncertainty introduced by past cost overruns and construction delays, median estimates of the cost of new large plants vary by more than a factor of 2.5. Expert judgments about likely SMR costs more train a factor or 2.5. Expery pulgiments about seep 3 win costs display an even wider range. Median estimates for a 45 megawatts-electric (MWJ) SMR range from \$4.000 to \$15.300.kW, and from \$3,200 to \$7.00kW, for a 2.594M, SMR. Sources of disagreement are highlighted, exposing the thought processes of experts inovelved with SMR design. There was consensus that SMRs could be built and brought online about 2 y faster than large reactors. Experts identify more affordable unit cost, factory fabrication, and shorter construction schedules as factors that may make light water SMRs economically viable

Our brains are not well-equipped to make decisions that inwho considerable uncertainty, As extensive empirical research
has now shown, we make such judgments using a variety of
copyrite he entristic stat, although they serve us adequately in
many day-to-day settings, can result in overconfidence and bias
hat leads both lay people and experts astray when they address
more complex and unusual problems (2, 3). Decision science (45) offern as et of strategies for improving how we make impor-tant decisions in the face of uncertainty.
In addressing such decisions, one should start with the best
scientific, technical, and analytical evidence that is available. However, because such formal existence often does not easitume the full
subdice, it is common in decision science to use formal methods to
obtain systematic probabilistic judgments from experts who are
intimately familiar with the current state of knowledge (9-11). For
example, such methods have been used to characterice uncertainty Our brains are not well-equipped to make decisions that in-

intimutely familiar with the current state of knowledge (9-11). For example, such methods have been used to charactere uncertainty about climate science (12, 13), the impacts of climate change (14-16), and the health impacts of environmental pollutaris (17, 18). Of course, the same cognitive limitations that arise when we try to make unaided decisions also arise when experts attempt to make unaided decisions also arise when experts attempt to pert ashive, little or mothing is done to limit overconfidence and reduce bias. Utsignatious overconfidence (10) and the biases arising from cognitive heuristics, such as availability and anchoring and adjustment (2, 19-21), cannot be completely diminated. However, well-designed expert electrations can use a variety of strategies to help improve the quality of expert judgments (9-11) less that is deeply informed by careful technical analysis is still relatively rare (22). Here, we report the results of applying these methods.

rare (22). Here, we report the results of applying these methods to one such technology: integral light water small modular nu-clear reactors (SMRs)



Example 2:

Expert judgments about transient climate response to alternative future trajectories of radiative forcing

Kirsten Zickfeld^{s,2}, M. Granger Morgan^{s,1}, David J. Frame^s, and David W. Keith^s

"School of Earth and Ocean Science, University of Victoria, Victoria, BC VBP S/Z, Canada, "Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, Ph 15213; "Smith School of Enterprise and the Environment and Department of Physics, University of Oxford, Oxford OX1 28Q, URs and "Department of Chemical and Petroloum Engineering University of Cadagns, Calips, AB 1721 NHA, Canada, Publish Engineering University of Cadagns, Calips, AB 1721 NHA, Canada, Publish Engineering University of Cadagns, Calips, AB 1721 NHA, Canada, Publish Engineering University of Cadagns, Calips, AB 1721 NHA, Canada, Publish Publi

Edited by Roger E. Kasperson, Clark University, Worcester, MA, and approved June 3, 2010 (received for review August 5, 2009)

turne trajectories of radiative forcing. To quantify this uncertainty we conducted face-to-face interviews with 14 leading climate scientists, using formal methods of expert elicitation. We structured the interviews around three scenarios of radiative forcing stabilizing at different levels. All experts ranked "cloud radiative feedbacks" as contributing most to their uncertainty about future recolosis as controlouing most to over uncertainty about truthe global mean temperature change, interspective of the specified level of radiative forcing. The experts disagreed about the relative contribution of other physical prosesses to their uncertainty about furture temperature change. For a forcing trajectory that stabilized at $7\,{\rm Wm}^{-1}$ in 2200, 13 of the 14 experts judged the probability that the climate system would undergo, or be irrevocably committed to. ar basic state change" as 20.5. The width and median values of the probability distributions elicited from the different experts for future global mean temperature change under the specified for-cing trajectories vary coraiderably. Even for a moderate increase in forcing by the year 2050, the medians of the elicited distributions of temperature change relative to 2000 range from 0.8–1.8 °C, and some of the interquartile ranges do not overlap. Ten of the 14 experts estimated that the probability that equilibrium climate sensitivity exceeds 4.5 °C is >0.17, our interpretation of the upper limit of the "likely" range given by the intergovernmental Panel on Climate Change. Finally, most experts anticipated that over the next 20 years research will be able to achieve only modest reduc-tions in their degree of uncertainty.

climate change | climate sensitivity | transient dimate response | expert elicitation | uncertainty analysis

ncertainty about the response of the climate system to future changes in radiative forcing arises from incomplete forcing and climate response data, incomplete understanding of climate system processes, and the limitations of climate models. A num-ber of studies using models of different complexity and different statistical methods have produced probabilistic estimates of equi-librium climate sensitivity (see refs. 1 and 2 for an overview) and projections over the twenty-first century (2, 3). Such modeling studies offer considerable insight about future climate change, its likely impacts, and associated uncertainties. However, experts working in climate science possess knowl-

edge that is not captured in models. To better explore this knowledge, we have previously employed methods of formal expert elicitation (4-9) to gain additional insight about the likely value of climate sensitivity (10), the likely impact of climate change on tropical and boreal forest ecosystems (11), the likely impacts of climate change on the Atlantic Meridional Overturning Circulation (12) and the likely values of direct and indirect radiative

forcing from anthropogenic acrosols (13).

Here we report results from a series of detailed formal face-to-face elicitations conducted with leading climate scientists in North America and Europe (Table 1) on the time-dependent response of the climate system to scenarios of radiative forcing. In a previous expert elicitation conducted with climate scientists (10) we focused on uncertainty in the value of equilibrium climate

www.pn.as.org/cgi/doi/10.1073/pnas.090890-6107

There is uncertainty about the response of the climate system to scribitivity (the equilibrium global mean temperature change future trajectories of radiative forcing. To quantify this uncertainty conclused in the present and unantify has been wickly discovered to the conducted face-force interviews with 14 leading climate. cussed in the scientific and policy literatures, it is far less relevant to policy making and to the assessment of likely impacts over the coming centuries, than the time-dependent response of the climate system.

To focus attention on the transient climate response, we structured the elicitation around scenarios that reflect a range of plausible future radiative forcing trajectories. Whereas the scenarios we employed were developed prior to the publication of the representative concentration pathways (RCPs) proposed for the climate model simulations in support of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) (14), they are similar to the RCPs (Fig. S1). We constructed three scenarios of netradiative forcing at the top

of the atmosphere from anthropogenic sources through the year 2200 (Fig. 1). In a "high" scenario radiative forcing stabilized at 4 Wm⁻², and in alow "overshoot" scenario forcing peaked at about 3 Wm⁻² in 2070 and then declined to near zero by 2200. We asked experts to assume that forcing from non-CO₂ green house gases and aerosols remained constant at year 2000 levels. Since the year 2000 forcings of these agents nearly compensate each other, the total forcing is very similar to that of CO₂ alone. To improve the match between the experts' knowledge and the question domain, we chose deliberately to specify scenarios of radiative forcing (as opposed to emissions) so as to limit discussion to the uncertainty in the physical rather than biogeochemical processes that deter-mine the response of the climate system to forcing. Most of our respondents have limited expert ecological and other biogeochemical knowledge. Specifying total radiative forcing instead of emis-sions obviated the need to ask about carbon cycle feedbacks, although two experts did explicitly discuss such effects.

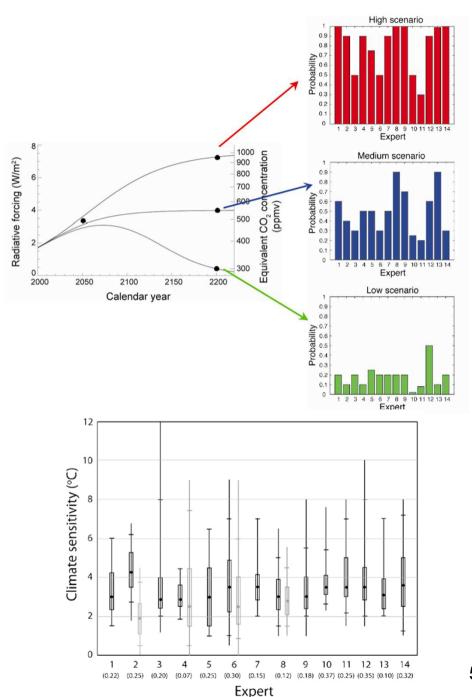
Results and Discussion

Key Factors Influencing Uncertainty in Transient Temperature Response. Before the face-to-face interviews, experts completed an e-mail survey to identify the factors they believed would most contribute uncertainty to their judgments about the change in global mean temperature, $\Delta T(t)$, for each of the three forcing trajectories. From those responses, we compiled the list of factors shown in the left-most column of Table S1.

This article is a PNAS Direct Submission.

To whom correspondence should be addressed. E-mail: granger.morgan@ andress.cmu.edu. Present addres: Brylonmant Canada, Canadian Contro for Climate Modelling and Analysis Victoria, BC VSP SC2, Canada

PNAS | July 13, 2010 | vol. 107 | no. 28 | 12451-12456



50

Example 3:

Climatic Change (2007) 82:235–265 DOI 10.1007/s10584-007-9246-3

Expert judgements on the response of the Atlantic meridional overturning circulation to climate change

Kirsten Zickfeld · Anders Levermann · M. Granger Morgan · Till Kuhlbrodt · Stefan Rahmstorf · David W. Keith

Received: 9 February 2006 / Accepted: 9 October 2006 / Published online: 22 March 2007 © Springer Science + Business Media B.V. 2007

Abstract We present results from detailed interviews with 12 leading climate scientists about the possible effects of global climate change on the Atlantic Meridional Overturning Circulation (AMOC). The elicitation sought to examine the range of opinions within the climatic research community about the physical processes that determine the current strength of the AMOC, its future evolution in a changing climate and the consequences of potential AMOC changes. Experts assign different relative importance to physical processes which determine the present-day strength of the AMOC as well as to forcing factors which determine its future evolution under climate change. Many processes and factors deemed important are assessed as poorly known and insufficiently represented in state-of-the-art climate models. All experts anticipate a weakening of the AMOC under scenarios of increase of greenhouse gas concentrations. Two experts expect a permanent collapse of the AMOC as the most likely response under a 4×CO₂ scenario. Assuming a global mean temperature increase in the year 2100 of 4 K, eight experts assess the probability of triggering an AMOC collapse as significantly different from zero, three of them as larger than 40%. Elicited consequences of AMOC reduction include strong changes in temperature, precipitation distribution and sea level in the North Atlantic area.

K. Zickfeld (⊠)

School of Earth and Ocean Sciences, University of Victoria, PO Box 3055 STN CSC, Victoria, BC V8W3P6, Canada e-mail: zickfel/@ocean.scos.uvic.ca

K. Zickfeld · A. Levermann · T. Kuhlbrodt · S. Rahmstorf Potsdam Institute for Climate Impact Research, Potsdam, Germany

M. G. Morgan Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, CA, USA

D. W. Keith
Department of Chemical and Petroleum Engineering, University of Calgary,
Calgary, Canada

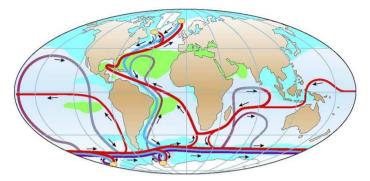
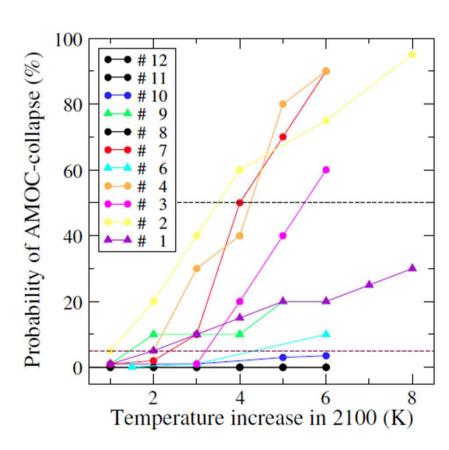


Figure source: Kuhlbrodt et al., 2005.



It may be tempting...

...to view expert elicitation as a low cost, low effort, alternative to doing serious research and analysis.

It is neither.

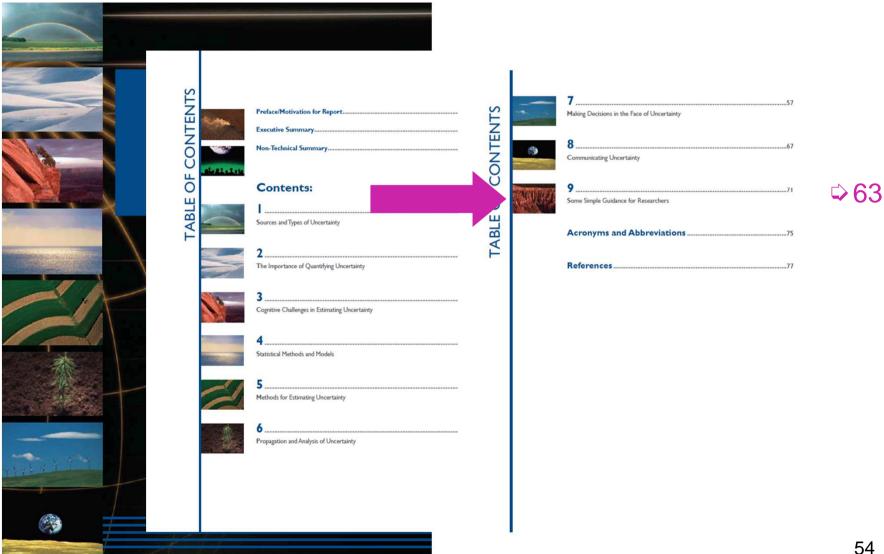
Expert elicitation should build upon the best available research and analysis and be undertaken only when the state of knowledge will remain insufficient to support timely informed assessment and decision making.

It is also tempting to want to combine the judgments of multiple experts in order to obtain *the* answer. Sometimes this makes sense. However, if different experts base their judgments on very different models of the way in which the world works, or if they produce quite different judgments that will be used as the input to a non-linear model, then combining judgments does not make sense.

This afternoon I will talk about:

- Sources of uncertainty and the characterization of uncertainty.
- Uncertainty versus variability.
- Two basic types of uncertainty.
 - Uncertainty about coefficient values.
 - Uncertainty about model functional form.
- Analyzing uncertainty.
- The use and abuse of "expert elicitation."
- Some summary guidance on reporting, characterizing and analyzing uncertainty.

CCSP Guidance Document



Doing a good job...

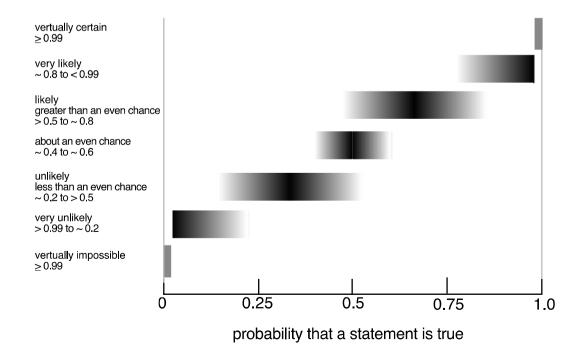
...of characterizing and dealing with uncertainty can never be reduced to a simple cookbook. One must always think critically and continually ask questions such as:

- Does what we are doing make sense?
- Are there other important factors which are as or more important than the factors we are considering?
- Are there key correlation structures in the problem which are being ignored?
- Are there normative assumptions and judgments about which we are not being explicit?

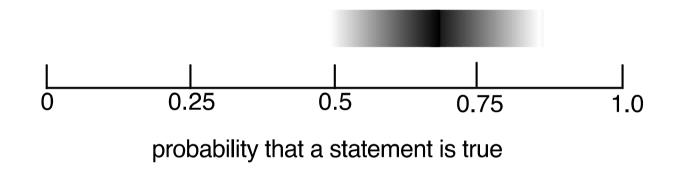
That said, the following are a few words of guidance...

Reporting uncertainty

When qualitative uncertainty words (such as likely and unlikely) are used, it is important to clarify the range of subjective probability values that are to be associated with those words. Unless there is some compelling reason to do otherwise, I recommend the use of a framework such as the one shown below:



Another strategy is to display the judgment explicitly as shown:



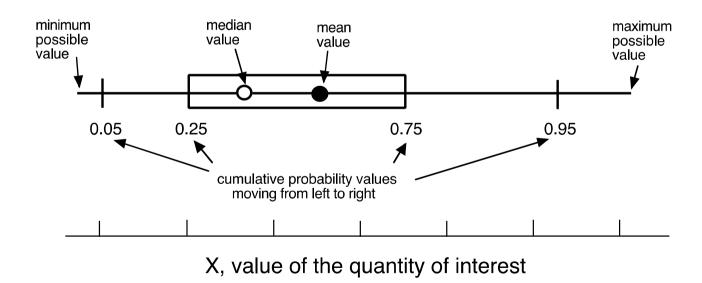
This approach provides somewhat greater precision and allows some limited indication of secondary uncertainty for those who feel uncomfortable making precise probability judgments.

In any document that reports uncertainties in conventional scientific format (e.g., 3.5±0.7), it is important to be explicit about what uncertainty is being included and what is not, and to confirm that the range is plus or minus one standard deviation. This reporting format is generally not appropriate for large uncertainties or where distributions have a lower or upper bound and hence are not symmetric.

Care should be taken in plotting and labeling the vertical axes when reporting PDFs. The units are probability *density* (i.e., probability per unit interval along the horizontal axis), *not* probability.

Since many people find it difficult to read and correctly interpret PDFs and CDFs, when space allows it is best practice to plot the CDF together with the PDF on the same x-axis.

When many uncertain results must be reported, box plots (first popularized by Tukey, 1977) are often the best way to do this in a compact manner. There are several conventions. Our recommendation is shown below, but what is most important is to be clear about the notation.

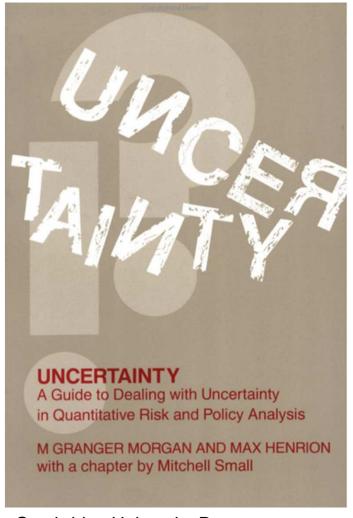


See: Tukey, John W., Exploratory Data Analysis, Addison-Wesley, 688pp., 1977.

While there may be circumstances in which it is desirable or necessary to address and deal with second-order uncertainty (e.g., how sure an expert is about the shape of an elicited CDF), one should be very careful to determine that the added level of complication will aid in, and will not unnecessarily complicate, subsequent use of the results.

For more details on...

...many of the ideas I've covered in this talk, see:



Cambridge University Press

CRAG Symposium:Uncertainty - From Insight to Action

Thanks very much

In developing the ideas discussed in this talk, I have been fortunate to have generous support from the U.S. National Science Foundation (SES-9209783; BCS-9218045; SES-034578; SES-0345798; SES-0949710; and others), the Department of Energy (DE-FG02-93ER61712; DE FG02-93ER61711; DE-FG02-94ER61916), the Electric Power Research Institute, the Alfred P. Sloan Foundation, the Gordon and Betty Moore Foundation, the Scaife Family Fund, the Doris Duke Charitable Foundation, the MacArthur Foundation, the IRGC, Carnegie Mellon University and a number of others. Thanks also to my many colleagues including Jay Apt, Inês Azevedo, Hadi Dowlatabadi, Baruch Fischhoff, Max Henrion, David Keith, Lester Lave, Sam Morris, Mitchell Small, Patti Steranchak, and a large number of current and former PhD students.