

A critical perspective on international demonstration projects, results and their scalability

Workshop on Demand Response

Matthias Stifter (AIT Energy Department, Austria),

IRGC, EPFL Lausanne, Sept.2015

Postulations

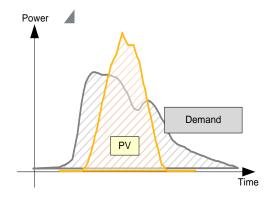
§ Demand response not wanted

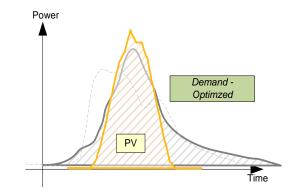
S customer participation does not work ("toy effect")

Is not economical

- Seconomic potential of DR on household level at Central European market conditions [Prüggerl2013]
 - Household loads: 1€ 6,5€ / year (2%- 15% shifting)
 - Heatpumps: 4,4€ 110€ year

§ Real potentials are small


s comfort comes for savings



Motivation for Demand Response at Households

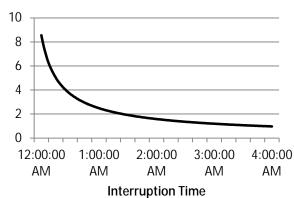
Need for flexiblity of the demand

- Increase of (local) distributed generation (e.g..: PV, CHP, Wind)
- à PV: "grid-parity"
- a Impact on network: curtailment (Germany: since 2013: 70% Peak curtailment)
- à Higher dynamics in the power system
- **a** Higher unbalance due to forecast errors

DR as a possible alternative to energy storage

Demand Response Resources

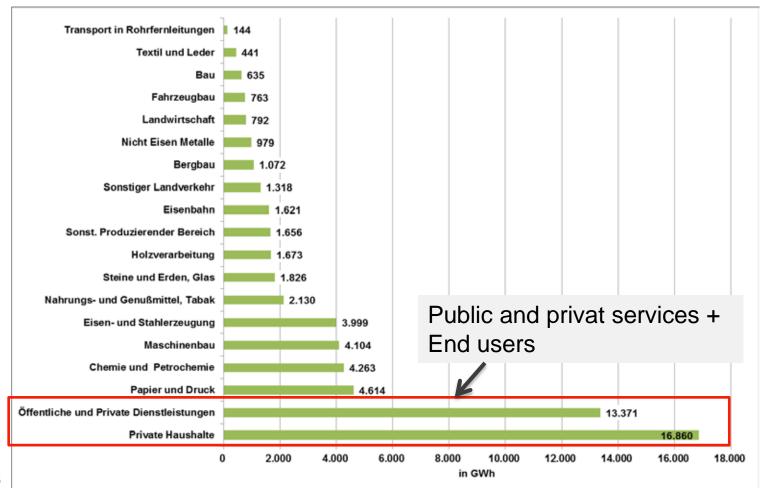
- **§ Electro thermal** thermal storage
 - S Warm water boilers
 - Sooling / freezers
 - Heating (HVAC) / Heatpumps ("Smart Grid Ready")
- **§ Electric vehicles** electrical storage
 - S Controlled charging
- **9** Public services load shifting
 - **§** Water pumps
 - S Waste water / sewage
- **Storages à** Buffer to meet energy constraint (comfort)
- **Load shifting** for network operation is already in place for many years (ripple control)
- **Solution** makes it more robust **a** Virtual Power Plant



Technical and practical potentials in Germany

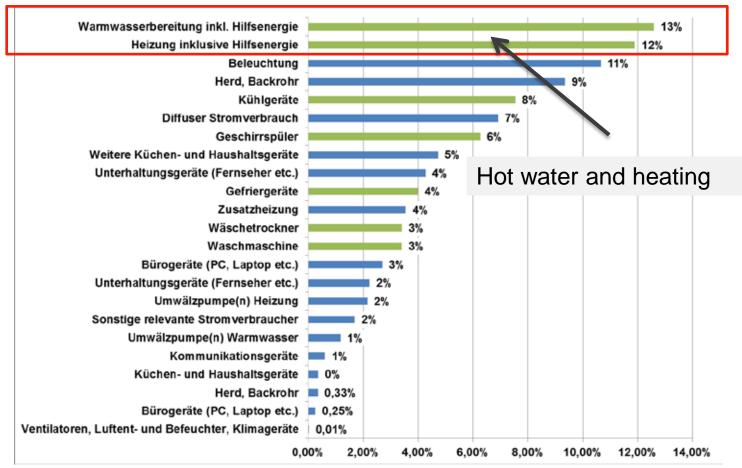
sectors	Techn. shiftable power		Displacable Energy			
	2010: ca. 2,6 GW		2010: ca. 8,0 TWh per year			
Household	2020: ca. 3,8 GW	9GW	2020: ca. 12,4 TWh per year			
	2030: ca. 6,0 GW	PSW, 40-70	2030: ca. 32,3 TWh per year 7-15% total			
Tertiary sector	2010: ca. 1,4 GW		2010: ca. 5,0 TWh per year electricity consumption			
	2020: ca. 1,7 GW	GW load	2020: ca. 5,6 TWh per year			
	2030: ca. 1,8 GW		2030: ca. 9,7 TWh per year			
Industry	2010, 2020, 2030 load shift potential of 2,8 GW to 4,5 GW					

§ 1,5 GW load shifting potential in Germany especially through thermal applications


Source: B.A.U.M Consult - Load shifting potentials in small and medium-sized businesses

Shiftable Power [GW]

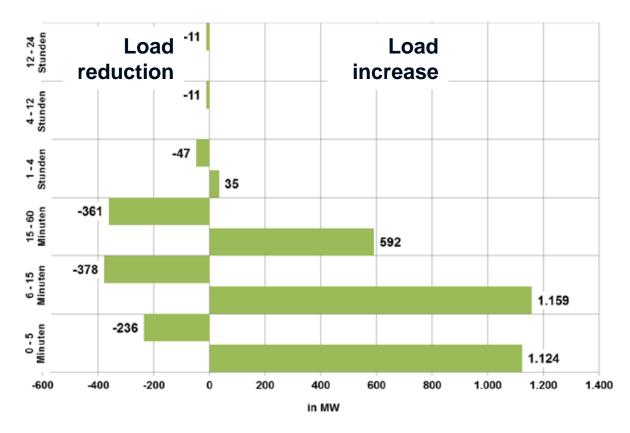
Sectorial electricity end use in Austria (2012)



14.09.2015

Source: Statistik Austria, 2012

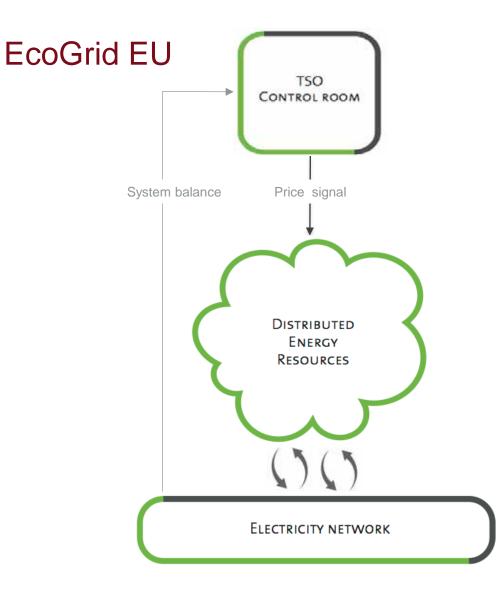
Categories of electricity use in households (2012)



Source: Statistik Austria, 2012

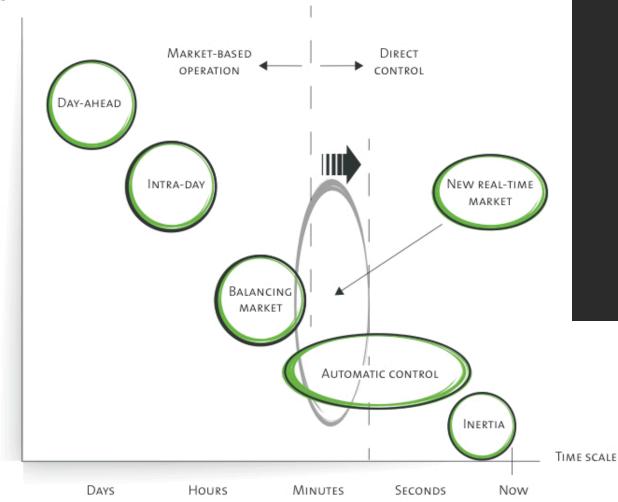
Technical potentials in Austria

§ Practical load shift demand at households in Austria



Examples from pilots and field tests

Results and Evaluation of DR Potentials


The market concept allows regulation of price signals without direct measurement of the individual DER response

*DER = Distributed Energy Resources

EcoGrid EU

QUANTITY

EcoGrid is an example of a real-time market that can be implemented in the context of existing power markets.

EcoGrid supports the need for direct control options on a very short time scale

2000 Participating Customers in the Demonstration

Manual Control

200 households with smart meters

No access to specific information

500 households with smart meters

Receiving simple market price information

Must move their energy consumption on their own

Automatic Control

700 automated households with IBM-Green Wave Reality equipment and smart meters

All houses have heat pumps or electric heating – responding autonomously to price signals

Aggregated automatic Control

500 automated households with Siemens equipment and smart meters

All houses have heat pumps or electric heating

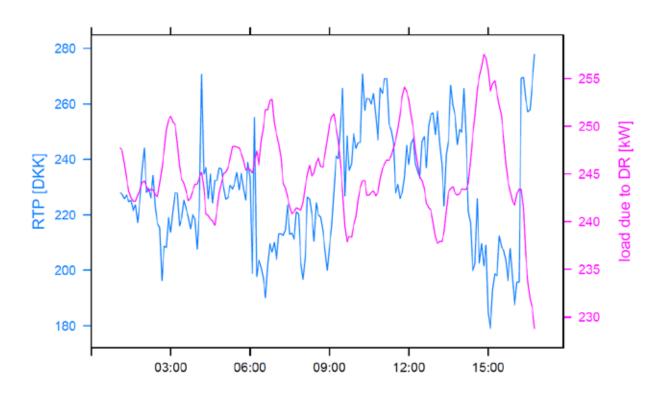
 responding to control signals

Smart Businesses

Up to 100 costumers with smart meters

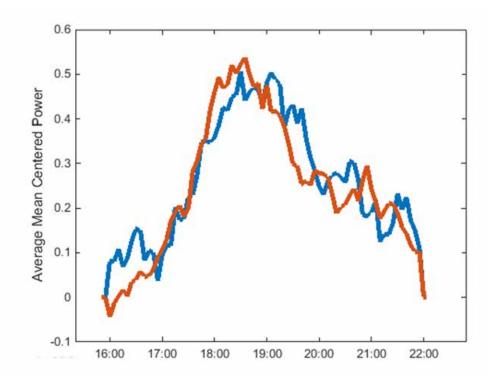
Including small business and public customers

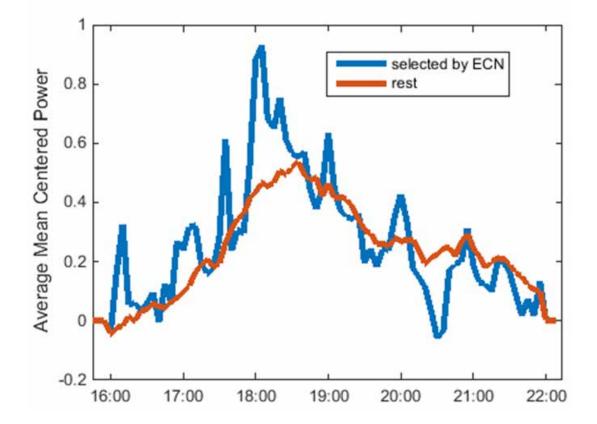
Connected smart appliances – responding to control signals


Why a new model for evaluation?

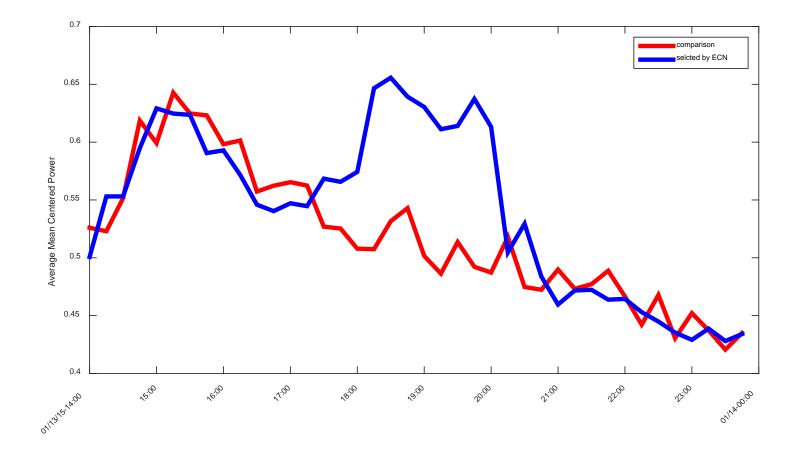
- S Experimental groups not comparable to the control group due to differences in group composition in terms of
 - S Heating systems (type, wood stoves)
 - S Usage (Holiday houses)
- S Market model is mostly nonlinear
 - Models systems response, but not statistically treatable
- S Therefore a purely linear model was used

Sample reaction


S Although linear, not always the same reaction to the same price due to influence from the past


Manual Customers

- **§** Tested in detail with very extreme control signals
- **§** Results for (for high prices)
 - S Reference group used for qualitative behavior
 - S manual group (red) and reference group (blue)



Very high prices – customers claiming to use the FBS

Very low price – customers who claimed to use the FBS

Hourly Response

	Increasing RTP [kW]			Decreas		
	Best	Average	Worst	Best	Average	Worst
Reference	0,0306	0,0017	0,0000	-0,0323	-0,0017	0,0000
Manual	0,0166	0,0013	0,0000	-0,0170	-0,0013	0,0000
Siemens	0,3177	0,0147	0,0000	-0,2101	-0,0147	0,0000
All households connected by IBM	0,1413	0,0089	0,0000	-0,1329	-0,0089	0,0000

No comparison feasible because of

- **§** Group composition
- S Degree of automation (simply blocking heat sources vs. home automation)

Demand response potential in EcoGrid project

S Normalized to group size (by average load) [%]

- Groups	- Increasing RTP [%]		- Decreasing RTP [%]		- Increasing DA [%]		- Decreasing DA [%]	
-	- Best	- Avera	- Best	- Avera	- Best	- Avera	- Best	- Avera
Semi-automated heat pumps (1A)	-20,5%	-1,5%	20,5%	1,5%	-10,9%	-0,5%	12,9%	0,5%
Semi-automated electric heating (1B)	-12,1%	-0,7%	9,4%	0,7%	-4,8%	-0,4%	5,1%	0,4%
Semi-automated heating with aggregation (1C)	-6,1%	-0,3%	6,4%	0,3%	-5,3%	-0,6%	5,2%	0,5%
Fully automated electric heating (2)	-41,7%	-1,9%	27,6%	1,9%	-23,4%	-1,6%	23,1%	1,6%
Manual	-2,6%	-0,2%	2,7%	0,2%	-12,5%	-0,5%	10,5%	0,5%

Replicability and Scalability

- § household characteristics
- **§** customer demography
- § acceptance of automation
 - increase of comfort and savings
 - s overrule
 - § information / support
 - needs to keep it simple as possible
- S Need of ICT infrastructure (e.g. AMI, big data handling)

Project SGMS-HiT– Smart Grids Model Region Salzburg

Buildings as interative participants in the Smart Grids

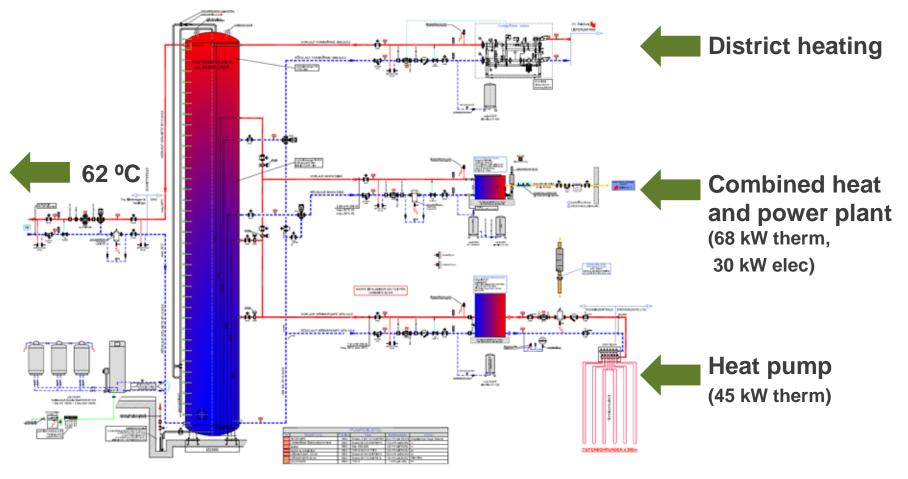
center for usability research & engineering

14.09.2015

SGMS – HiT

Utilizing HVAC-Systems (heating, hot water)

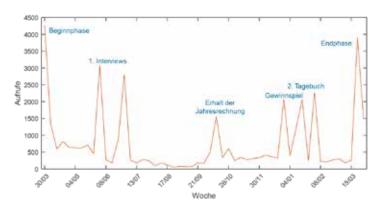
- Separate usage of energy from energy supply
 à Buffering with thermal storages
- S Use energy which is most efficient for the grid
 - PV Heatpump
 - Biogas (CHP)
 - § Grid
 - S District heating
 - à grid friendly building



§ Comfort must be **preserved**.

SGMS – HiT

Three heat sources feeding into one storage tank

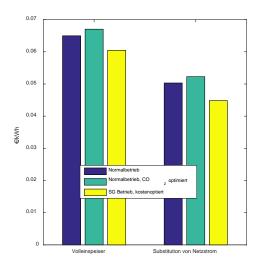


14.09.2015 **90m³ Hot water storage tank**

SGMS – HiT – Consumer Evaluation

§ Usage of Smart Center

- **§** Energy Consumption
 - EcoButton
 - S Dish Washer shiftable
 - S Cooking not shiftable
 - S Comfort for consumption


SGMS – HiT - Building Energy Management System

Heat source	Red	Yellow	Green	
СНР	+17 %	-11 %	-6 %	
HP	-12 %	+9 %	+3 %	

§ Cost savings:

Postulations

§ Demand Response not wanted

- Increase the direct use of generated energy (PV use, EV charging)
- S Keep it simple, no over engineering
- Sector Potentials in areas of *low system reliability* (little energy better than no)

§ Is not economical

- Solution Building energy management system (MPC) save up to 30%
- S Additional objectives with "grid friendly" constraints

§ Real potentials are NOT small

- Start with the "low hanging fruits"
- Solution Big loads with technology which is in place (ripple control, smart meters)
- S No comfort loss, even increase

AIT Austrian Institute of Technology

your ingenious partner

Matthias Stifter

Energy Department Electric Energy Systems

AIT Austrian Institute of Technology Giefinggasse 2 | 1210 Vienna | Austria T +43(0) 50550-6673 | M +43(0) 664 81 57 944 | F +43(0) 50550-6613 matthias.stifter@ait.ac.at | http://www.ait.ac.at