TH zürich

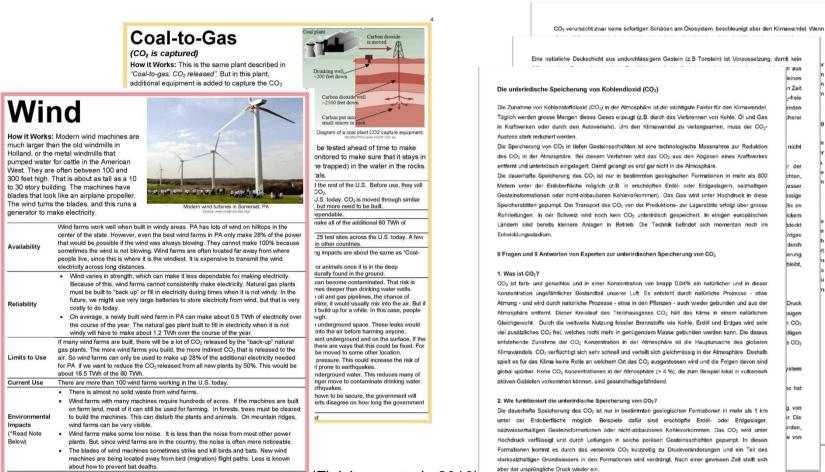

Uncertainty in the public perception of new technologies: The case of energy resources

Vivianne Visschers

Importance of communication with the public

- Public perception has strong impact on policy making (Burstein, 2003), and thus major determinant of a country's energy portfolio, e.g.,
 - CCS project in Barendrecht (NL), 2010
 - Restarting nuclear power generation in Italy, 2011

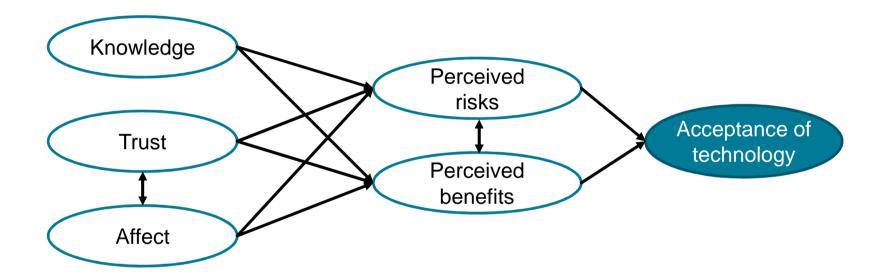
Energy technologies related to uncertainties and risks



- Communication with the public is necessary
- To be able to communicate, the public's perception should be known (Bruine de Bruin & Bostrom, 2014)

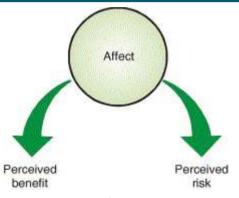
Communication based on knowledge & beliefs

Targeted communication materials >> more informed decisions, but require a lot of elaboration and effort!


(Fleishman et al., 2010)

Wind farms present very few risks to people

* Note: Health, Water and Land Impacts are shown on a Separate Sheet

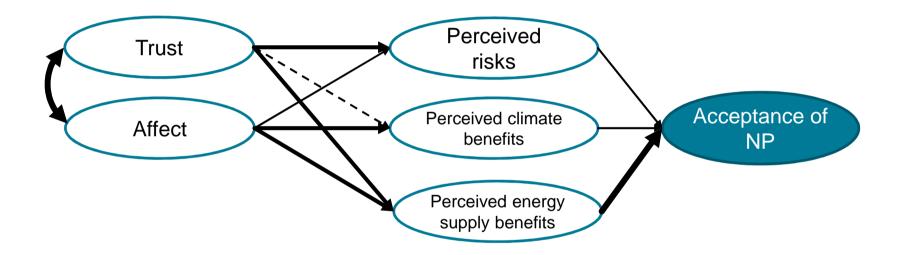

(Wallquist et al., 2011)

What determines acceptance of a technology?

What determines acceptance of a technology?

Affect heuristic

(Finucane et al., 2000)


Feeling-as-information: affect guides judgments and decisions and motivates behaviour (Damasio, 1994; Kahneman, 2003; Schwarz, 2011)

Trust as heuristic

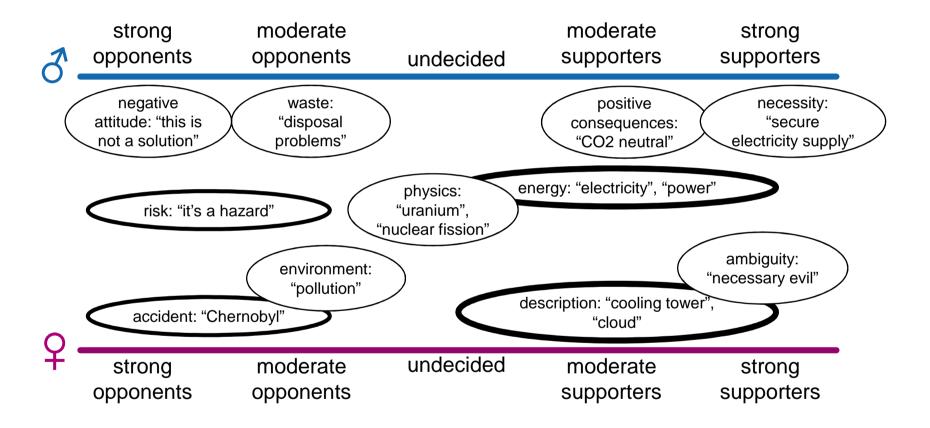
(Siegrist et al., 2000)

Explaining acceptance of nuclear power stations

> Affect and trust are important in explaining acceptance of nuclear power.

Explaining acceptance of various energy technologies

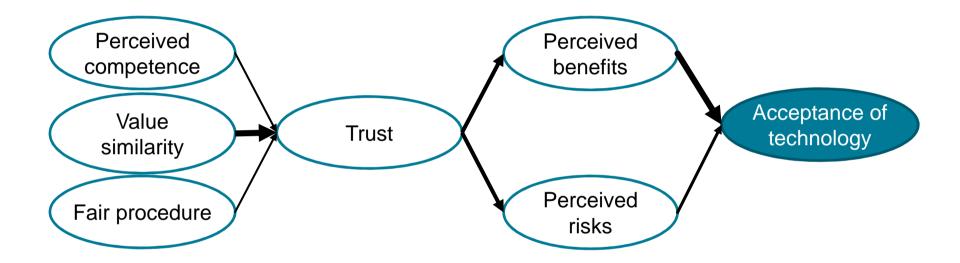
	solar power			nuclear power			hydro power			gas power			wind power		
	В	β	95% CI	В	β	95% CI	В	β	95% CI	В	β	95% CI	В	β	95% CI
Constant	4.15		3.89; 4.41	3.46		3.08; 3.83	4.22		3.91;4.52	1.97		1.72;2.21	2.89		2.62; 3.16
Positive emotions	.26	.33	.22; .31	.26	.22	.18;.33	.23	.32	.19; .28	.37	.29	.30; .43	.41	.49	.37; .46
Negative emotions	43	28	51;36	24	26	30;18	27	23	34;21	23	56	27;18	34	22	41;27
Trust	.24	.34	.20; .29	.27	.33	.21;.33	.21	.28	.16; .26	.38	.42	.34; .45	.25	.28	.20; .30
	$R^2 = .52$			$R^2 = .49$			$R^2 = .41$			$R^2 = .56$			$R^2 = .62$		


Explaining acceptance of various energy technologies

	solar power				nuclear power			hydro power			gas power			wind power		
	В	β	95%	6 CI	В	β	95% CI	В	β	95% CI	В	β	95% CI	В	β	95% CI
Constant	4.11		3.82;	4.41	2.13		1.54;2.72	3.17		2.80; 3.54	1.67		1.30; 2.05	2.17		1.79; 2.55
Positive emotions	.15	.19	.10;	.19	.14	.13	.07; .21	.11	.15	.07; .15	.17	.13	.11;.22	.22	.26	.18; .26
Negative emotions	30	20	38;	23	11	13	17;06	11	09	17;05	14	16	18;10	17	11	23;11
Trust	.14	.19	.10;	.18	.11	.13	.05;.17	.10	.13	.05.14	.19	.20	.14; .24	.14	.16	.10; .18
Perceived benefits	.30	.34	.25;	.35	.48	.43	.41;;55	.46	.45	.41; .52	.58	.45	.51; .65	.49	.41	.43; .55
Perceived costs	14	16	19;	10	09	10	17;02	16	21	20;12	14	13	19;09	15	15	19;10
	$R^2 =$.61			$R^2 =$.60		$R^2 =$.59		$R^2 =$.70		$R^2 =$.74	

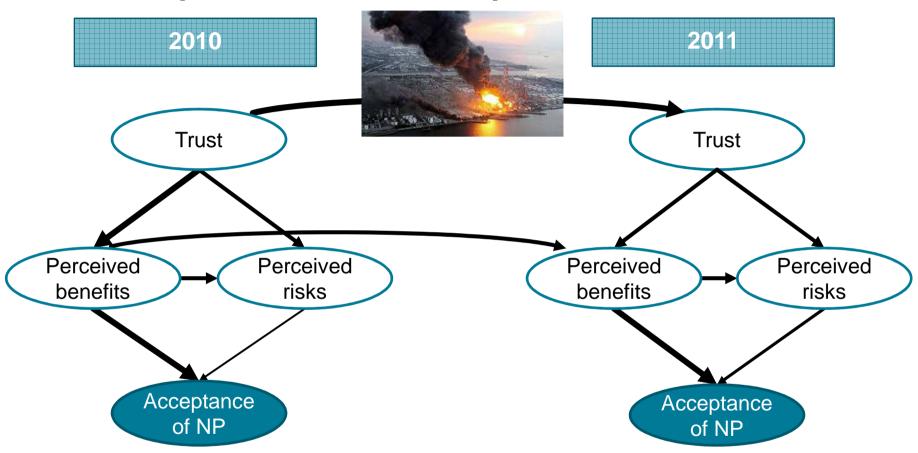
What underlies affect?

- Affective imagery
- Method: two-steps
 - Ask respondent for his/her spontaneous association with a stimulus
 - Let respondent rate the affective quality of each association (i.e., on a scale from very negative to very positive)
- Associations are categorized
- Outcome measures: Frequencies and affective evaluations of categories
- Telephone survey in 2009
- Perception of nuclear power
- Frequencies of association categories related to acceptance of nuclear power.


What underlies affect?

 Different levels of acceptance are related to different affective images: regarding content ànd concreteness.

(Keller et al., 2012)


What determines trust?

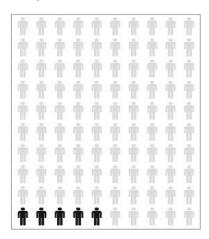
- More expertise of stakeholder
- If the public can participate in the decision procedure
- Stakeholders that have similar values and goals as decision maker.

(Siegrist et al., 2000; Terwel et al., 2009; 2010; Wallquist et al., 2012)

Stable impact of trust on acceptance

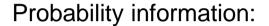
> Trust remained important, even after receiving information about the nuclear accident and more knowledge was thus available.

Communicating uncertainty – More about affect


Integral affect induction, e.g. fear appeals and narratives/testimonials

(Schwarz, 2011; see Visschers et al., 2012 for an overview)

Communicating uncertainty – More about affect


- Incidental affect induction: indirectly induced by communication material or situation but connected to the hazard
 - Fluency: "chlorofluorocarbon" vs. "propellant"
 - Probability information:
 - Verbal vs. numerical expressions:
 "highly unlikely", "very small chance" or "very uncommon" vs. ".001%"
 - Graphs vs. numbers:

vs. "5 out of 100"

(Schwarz, 2011; see Visschers et al., 2012 for an overview)

Communicating uncertainty: Impact on affect and trust

Two studies showed that the probability is X%.

Ambiguous information:

Two studies showed that the probability is between **X** and **Y**%.

- may reduce trust in the information source
- can make the source appear more honest or less honest (?)
- and increases aversion towards the hazard.

Conflicting information:

Study A showed that the probability is X%. Study B showed that the probability is Y%.

- reduces trust in the information source
- reduces the perceived competence of the source and the risk assessor
- may induce outrage
- and increases aversion towards the hazard.

(Johnson & Slovic, 1995; 1998; Markon & Lemyre, 2013; Smithson, 1999; Visschers et al., 2012)

Implications for communicating uncertainty

In general:

- Target content of your message to your public!
- Perceived benefits strongest relation with acceptance of a technology
 - > To influence acceptance, question or assure the benefits
- Increase trust in stakeholders by emphasizing similar values and goals >> image cultivation
 - If trust is high, an unexpected, salient event does not bring much damage
- Use people's affective images with the technology
 - To strengthen/emphasize affective images
 - To provide people with concrete affective images that are associated with acceptance.

Implications for communicating uncertainty - Probability

Regarding uncertain probability information:

- Carefully communicate this type of information, consider its effect on competence, trust and emotions
- Be aware of affect induction
 - Can be very persuasive, but morally acceptable?
 - Pretest communication material!

Thank you!

vvisschers@ethz.ch

ETH zürich

Literature

- Bruine de Bruin, W., & Bostrom, A. (2013). Assessing what to address in science communication. *Proceedings of the National Academy of Sciences*, 110. 14062-14068.
- Fleishman, L. A., Bruine De Bruin, W., & Morgan, M. G. (2010). Informed public preferences for electricity portfolios with CCS and other low-carbon technologies. *Risk Analysis*, *30*, 1399-1410.
- Keller, C., Visschers, V., & Siegrist, M. (2012). Affective imagery and acceptance of replacing nuclear power plants. *Risk Analysis*, 32, 464-477.
- Markon, M.-P. L., & Lemyre, L. (2012). Public reactions to risk messages communicating different sources of uncertainty: An experimental test. *Human and Ecological Risk Assessment: An International Journal*, 19, 1102-1126.
- Schwarz, N. (2011). Feelings as Information Model. In P. A. M. Van Lange, A. W. Kruglanski & E. T. Higgins (Eds.), *Handbook of Theories of Social Psychology* (Vol. 1, pp. 289-308). London: Sage Publications.
- Siegrist, M., & Cvetkovich, G. (2000). Perception of hazards: The role of social trust and knowledge. Risk Analysis, 20, 713-720.
- Siegrist, M., Cvetkovich, G., & Roth, C. (2000). Salient value similarity, social trust, and risk/benefit perception. Risk Analysis, 20, 353-362.
- Smithson, M. (1999). Conflict aversion: Preference for ambiguity vs conflict in sources and evidence. *Organizational Behavior and Human Decision Processes*, 79, 179-198.
- Terwel, B. W., Harinck, F., Ellemers, N., & Daamen, D. D. (2009). Competence-based and integrity-based trust as predictors of acceptance of carbon dioxide capture and storage (CCS). *Risk Analysis*, *29*, 1129-1140.
- Terwel, B. W., Harinck, F., Ellemers, N., & Daamen, D. D. L. (2010). Voice in political decision-making: The effect of group voice on perceived trustworthiness of decision makers and subsequent acceptance of decisions. *Journal of Experimental Psychology: Applied, 16,* 173-186.
- Visschers, V. H. M., Keller, C., & Siegrist, M. (2011). Climate change benefits and energy supply benefits as determinants of acceptance of nuclear power stations: Investigating an explanatory model. *Energy Policy*, *39*, 3621-3629.
- Visschers, V. H. M., & Siegrist, M. (2008). Exploring the triangular relationship between trust, affect, and risk perception: A review of the literature. *Risk Management*, *10*, 156-167.
- Visschers, V. H. M., & Siegrist, M. (2012). Fair play in energy policy decisions: Procedural fairness, outcome fairness and acceptance of the decision to rebuild nuclear power plants. *Energy Policy*, *46*, 292-300.
- Visschers, V. H. M., & Siegrist, M. (2013). How a nuclear power plant accident influences acceptance of nuclear power: Results of a longitudinal study before and after the Fukushima disaster. *Risk Analysis*, 33, 333-347.
- Visschers, V. H. M., Wiedemann, P. M., Gutscher, H., Kurzenhäuser, S., Seidl, R., Jardine, C. G., et al. (2012). Affect-inducing risk communication: current knowledge and future directions. *Journal of Risk Research*, *15*, 257-271.
- Wallquist, L., Visschers, V. H. M., Dohle, S., & Siegrist, M. (2011). Adapting communication to the public's intuitive understanding of CCS. *Greenhouse Gases: Science and Technology, 1*, 83-91.
- Wallquist, L., Visschers, V. H. M., Dohle, S., & Siegrist, M. (2012). The role of convictions and trust for public protest potential in the case of carbon dioxide capture and storage (CCS). *Human and Ecological Risk Assessment: An International Journal, 18*, 919-932.